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ABSTRACT: This study develops an innovative approach to homogenize discontinuities in both mean and variance in

global subdaily radiosonde temperature data from 1958 to 2018. First, temperature natural variations and changes are

estimated using reanalyses and removed from the radiosonde data to construct monthly and daily difference series. A

penalized maximal F test and an improved Kolmogorov–Smirnov test are then applied to the monthly and daily difference

series to detect spurious shifts in the mean and variance, respectively. About 60% (40%) of the changepoints appear in the

mean (variance), and;56% of them are confirmed by available metadata. The changepoints display a country-dependent

pattern likely due to changes in national radiosonde networks. Mean segment length is 7.2 (14.6) years for the mean

(variance)-based detection. A mean (quantile)-matching method using up to 5 years of data from two adjacent mean

(variance)-based segments is used to adjust the earlier segments relative to the latest segment. The homogenized series is

obtained by adding the two homogenized difference series back to the subtracted reference series. The homogenized data

exhibit more spatially coherent trends and temporally consistent variations than the raw data, and lack the spurious tro-

pospheric cooling over North China and Mongolia seen in several reanalyses and raw datasets. The homogenized data

clearly show a warmingmaximum around 300 hPa over 308S–308N, consistent with model simulations, in contrast to the raw

data. The results suggest that spurious changes are numerous and significant in the radiosonde records and our method can

greatly improve their homogeneity.
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1. Introduction

Since the 1950s, under the auspices of theWorldMeteorological

Organization (WMO), balloon-borne radiosonde measurements

have provided the only long-term and high-vertical-resolution

subdaily records (twice daily for most stations) of temperature,

humidity, and winds over the continents and many islands (Durre

et al. 2018). These radiosonde data have been used to constrain

weather forecasts (Benjamin et al. 2004; Lee et al. 2019; Naakka

et al. 2019) and historical atmospheric reanalyses (Kalnay et al.

1996; Dee et al. 2011; Kobayashi et al. 2015; Hersbach et al. 2020),

calibrate satellite data (Sun et al. 2017; Carminati et al. 2019), and

study regional extremes (DeRubertis 2006; Waugh and Schuur

2018). In particular, radiosonde temperature data are crucial in

quantifying and attributing atmospheric warming trends (Gaffen

et al. 2000; Santer et al. 2005; Thorne et al. 2005; Karl et al. 2006;

Sherwoodetal. 2008;Fuetal. 2011;Thorneetal. 2011a,b;Santeretal.

2017), quantifyingatmospherichumidity andwater vapor trends (Dai

et al. 2011; Zhao et al. 2012; Wang et al. 2016), and studying atmo-

spheric instability and buoyancy changes (Chen et al. 2020).

However, these applications are severely hampered by

spurious discontinuities or changes in themean and/or variance

of the radiosonde data arising from changes in instruments,

observational practices, manufacturer processing methods,

and so on (Gaffen 1993; Thorne et al. 2005; Sherwood et al.

2008; Wang and Zhang 2008; Dai et al. 2011; Haimberger et al.

2012). For example, these artificial changes may have been

propagated into many atmospheric reanalysis products by data

assimilation systems, leading to unreliable long-term changes

in these widely used products (Dai et al. 2011, 2013; Zhou et al.

2018). Even for reanalysis products during the satellite era

since 1979 when radiosonde data account for only a fraction of

the assimilated data, they could still have the single largest

impact, as shown in the Modern-Era Retrospective Analysis

for Research and Applications (MERRA; see https://gmao.

gsfc.nasa.gov/forecasts/systems/fp/obs_impact/) (Rienecker

et al. 2011); therefore, the discontinuities in radiosonde data

can still degrade the quality of the reanalysis products dur-

ing the satellite era.

The Fifth Assessment Report of the United Nations Inter-

governmental Panel on Climate Change (IPCCAR5) (Hartmann

et al. 2013) has also pointed out a medium to low confidence

level in the detected long-term changes in tropospheric and

stratospheric temperatures and their vertical structure, partly

due to significant nonclimatic changes in the radiosonde data.

Furthermore, atmospheric water vapor and humidity trends

estimated based on radiosonde data depend critically on the

quality of the temperature data (Dai et al. 2011; Zhao et al.

2012; Wang et al. 2016). Thus, reducing the discontinuities

and the associated spurious changes in radiosonde temperature

data is important for increasing our confidence in the detection and

attribution of tropospheric and lower-stratospheric temperature
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and water vapor changes and for improving the quality of atmo-

spheric reanalysis products.

Considerable efforts have been devoted by many groups to

identify and remove spurious nonclimatic shifts in radiosonde

monthly temperature data (Parker et al. 1997; Peterson et al.

1998; Lanzante et al. 2003; Free et al. 2005; Thorne et al. 2005;

Haimberger 2007; Guo and Ding 2009; Thorne et al. 2011b;

Haimberger et al. 2012; Chen and Yang 2014). Lanzante et al.

(2003) and Free et al. (2005) adjusted artificial discontinuities

in radiosonde monthly temperature series at 87 stations

over the globe using metadata to create the Radiosonde

Atmospheric Temperature Products for Assessing Climate

(RATPAC)dataset.However,many spurious shifts in radiosonde

and other climate records are not documented by the notoriously

incomplete metadata (i.e., station history logs); hence statistical

methods have been developed to detect and remove spurious

changes often in monthly mean time series for temperature and

other variables (Reeves et al. 2007; Thorne et al. 2011b).

Most existing automated homogenization methods are for

identifying and adjusting spurious shifts in the mean of a can-

didate time series (often for monthly data) by comparison

with a reference series from different sources. For example,

Parker et al. (1997) corrected discontinuities of monthly tem-

perature by comparing with the collocated satellite-based

Microwave Sounding Unit (MSU) temperature series since

1979 for constructing the Hadley Centre Radiosonde

Temperature (HadRT) dataset. Thorne et al. (2005) used a

composite of neighboring soundings as a reference series for

developing the homogenized HadAT dataset (as an update to

HadRT). Sherwood et al. (2008) utilized nighttime tempera-

ture as a reference series to correct the systematic errors in

daytime temperature due to solar heating on instruments over

regions where daytime and nighttime observations are avail-

able (only covering ;1/3 of the archived stations) for building

the IUK (Iterative Universal Kriging) dataset. Haimberger

(2007) applied a variant of the Standard Normal Homogeneity

Test (SNHT)with ERA-40 [the European Centre forMedium-

Range Weather Forecasts (ECMWF) 40-Year Re-Analysis]

forecast data (Uppala et al. 2005) as a reference to establish

the Radiosonde Observation Correction Using Reanalyses

(RAOBCORE) dataset. Haimberger et al. (2012) further re-

fined this approach by using the breakpoints identified to select

apparently homogeneous segments from neighboring stations

as a reference to build the Radiosonde Innovation Composite

Homogenization (RICH) dataset, which has been assimilated

into various reanalyses, including the ECMWF interim re-

analysis (ERA-Interim; Dee et al. 2011), MERRA (Rienecker

et al. 2011), and the 55-year Japanese Reanalysis (JRA-55;

(Kobayashi et al. 2015). Additionally, Guo and Ding (2009)

and Chen and Yang (2014) homogenized radiosonde monthly

temperature data over China using the reanalysis temperature

series from NCEP-R1 (the National Centers for Environmental

Prediction Reanalysis 1) (Kalnay et al. 1996) and ERA-40

(Uppala et al. 2005) as a reference series.

These methods based on comparison with a reference series

have been questioned, especially due to the issues related to

the selection of a reference series, including too short or no

data overlap, sparse nearby stations, similar shifts in adjacent

stations, inhomogeneity in reanalysis data, and so on (Della-Marta

and Wanner 2006; Dai et al. 2011; Zhou et al. 2018). For ex-

ample, the ERA-40 initial and thus forecast data may still

contain the systematic biases in radiosonde data, and their

use as the reference series will thus potentially propagate

these biases into the homogenized product. This appears to

be the case for the spurious tropospheric cooling trend cen-

tered over North China and Mongolia that occurred mainly

from 1950s to the early 1970s (Zhou and Zhang 2009) that is

seen in the raw radiosonde data andmany reanalysis products

(Dai et al. 2013). Using the average of neighboring stations as

the reference series is also problematic because radiosonde

stations are often sparse and tend to have similar spurious

shifts due to simultaneous changes in national networks,

leading to difficulties in generating or discontinuities in such a

reference series, particularly in large countries where most

neighboring stations may suffer from similar data artifacts.

Homogenization efforts to date have only adjusted the dis-

continuities in themean of monthly upper air temperature [i.e.,

the first-order moment of a probability density function

(PDF)], with no attempts to adjust the discontinuities in the

variance of the subdaily temperature data (i.e., the high-order

moment), mainly due to the difficulties in detecting and ad-

justing spurious shifts in daily data that have large synoptic and

local variability but low spatial correlations. Individual

sounding reports are influenced by not only synoptic-scale

fluctuations but also local processes that are complex and

nonlinear, resulting in a relatively small decorrelation distance,

especially for lower levels over topographically complex re-

gions. Because of this, how to separate and remove the large

natural variations from the artificial changes in subdaily tem-

perature series is difficult but crucial for homogenizing the

subdaily radiosonde data.

On the other hand, reliable daily or subdaily temperature

data are needed for studying weather and climate extremes

(Zhou and Wang 2016b; Zhou et al. 2019; Sippel et al. 2020)

that greatly impact natural and social systems. Homogenized

subdaily upper air temperature data are also needed for input

into reanalysis assimilation systems and for calculating water

vapor variables (Dai et al. 2011). The lack of reliable tropo-

spheric temperature data also prevents us from effectively

validating the enhanced warming over the tropical mid- to

upper troposphere projected by climate models under in-

creased greenhouse gases (GHGs) (Santer et al. 2005; Karl

et al. 2006; Fu et al. 2011; Mitchell et al. 2013; Santer et al.

2017). Therefore, it has become increasingly urgent to develop

an automated homogenization approach for building a homog-

enized subdaily upper air temperature dataset that contains

minimal discontinuities in both the mean and variance, as noted

previously in chapter 2.4 of IPCC AR5 (Hartmann et al. 2013).

Dai et al. (2011) made the first attempt to homoge-

nize subdaily radiosonde humidity [i.e., dewpoint depression

(DPD)] data from the 1950s to 2009 over the globe, by de-

tecting changepoints in DPD’s occurrence frequency and

PDFs to remove spurious shifts in the subdaily time series.

Unlike DPD, temperature is nonstationary and more variable,

which makes its homogenization more difficult, although its

sampling is likely more homogeneous than DPD (Dai et al.
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2011). Building on Dai et al. (2011), we developed a new ap-

proach to create a homogenized global radiosonde dataset with

subdaily temperatures by separately detecting and removing

the major discontinuities in the mean and variance, which is

referred to as the University at Albany Homogenized

Radiosonde Subdaily dataset (UA-HRD).

To reach this goal, we first compiled all the available ra-

diosonde temperature data and conducted initial quality

controls, as described in section 2. In section 3, we

described a four-step approach to detect and adjust disconti-

nuities in the mean and variance of subdaily temperature rec-

ords. We examined the correlations and homogeneities of two

types of reanalysis products to estimate natural temperature

variations and changes and then remove them from the raw

radiosonde data to construct monthly and daily temperature

difference series, as described in section 3a. In section 3b, the

two types of changepoints in the mean and variance were

analyzed and compared with available metadata. In

section 3c, we described the adjustment methods to re-

move the discontinuities. The long-term trend and vari-

ance of the homogenized temperature data were analyzed

and compared with those from the raw data in section 4. A

summary is given in section 5.

2. Radiosonde data and preprocessing

Three radiosonde temperature datasets were first compiled

in this study, including the Integrated Global Radiosonde

Archive version 2 (IGRA2) built from 33 different data sour-

ces (Durre et al. 2018) and two distinct ERA-assimilated ra-

diosonde datasets (Pralungo et al. 2014) used in ERA-40 and

ERA-Interim, respectively.

The outliers and duplicates in each data source were de-

tected and removed. One example is shown in Fig. 1 using the

0000 UTC reports at 300 hPa from the Lijiang station, China.

The outliers are defined as data points outside the climato-

logical mean plus and minus five standard deviations (SD)

range (blue pluses in Fig. 1) calculated using the whole

anomaly data series for each pressure level and observation

time. The duplicates are five or more consecutive identical

values separated by larger than 30 elapsed days (red dots in

Fig. 1). Less than 0.1% of the data were removed using these

two checks.

These quality-controlled data were then merged with pref-

erence given to IGRA2 to create a comprehensive, global 0000

and 1200 UTC radiosonde temperature dataset at the surface

and 16 standard levels, namely 1000, 925, 850, 700, 500, 400,

300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa. Merging was

achieved through (i) matching station identifiers or names, (ii)

assessing data similarity (i.e., over 50% of the overlapping data

having a temperature difference of ,0.28C at the matching

stations within 40 km; Durre et al. 2006, 2018), and (iii) in-

cluding the remaining unique stations in the final dataset.

To calculate monthly anomalies and make the homogeni-

zation robust, we removed any month with fewer than 10 days

with valid data, and any year with fewer than 3 months with

data (i.e., at least 10 days having reports within the month)

from our analysis, as shown by green dots in Fig. 1. This re-

moved about 2% of the merged data holdings. As a result, a

total of 1184 stations with 10 or more years of data on one or

more pressure levels are included in this study. ERA-

assimilated radiosonde data sources contribute 59 new

stations and about 9% of the merged data (Figs. 2a,b). There

FIG. 1. Individual radiosonde temperature reports at 0000 UTC

and 300 hPa at station Lijiang, China, from the merged dataset.

Outliers (outside the65 standard deviation range; blue plus signs)

and duplicates (consecutive red dots) were removed. Some data

points (green dots) were also excluded in our analysis due to in-

sufficient monthly sampling (see the text for details). Black dots

represent subdaily raw temperatures retained in our subsequent

analysis.

FIG. 2. (a) Time series of the number of radiosonde stations with

10 or more years of data from IGRA2 and ERA-40- and ERAI-

assimilated radiosonde datasets, and from our merged dataset. The

gray background shows the study period from 1958 to 2018.

(b) Vertical profiles of the number of radiosonde stations with n or

more years (n5 10, 20, 30, 40, 50, and 60) of data during 1958–2018.

(c) Radiosonde record length (in years) at 500 hPa, the level that

has the most data. Note that station start and cessation dates are

highly variable.
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are very few (,50) stations before 1957; thereafter, the number

of stations increased steadily from ;650 around 1958 to ;900

in the 1980s and then declined in the 1990s and remained

around 750 in recent years (Fig. 2a). Thus, our analysis focuses

on 1958–2018, during which 1184 stations have 10 or more

years of data for at least one pressure level (Fig. 2a). Most of

the stations have sufficient long-term data from 1958 to 2018

except at the upper levels (Fig. 2b) or over South America,

Africa, and the Middle East (Fig. 2c) and the data at 925 hPa

are available generally only from about 1992 to 2018 and only

from low elevation stations. Figure 3 shows the radiosonde

types obtained from the radiosondemetadata from the IGRA2

archive (https://www1.ncdc.noaa.gov/pub/data/igra/history/)

for the period 2007–12. At least 12 different types of radio-

sondes were used at that time, often distinguished by coun-

tries (Fig. 3). However, it should be stressed that radiosonde

model usage has varied enormously through time at all ra-

diosonde stations (Thorne et al. 2011b).

The temperature data series at 0000 and 1200 UTC for each

of the surface (often measured by surface station instruments,

not by radiosonde sensors) and 16 standard pressure levels

were analyzed separately. They were converted into daily

anomalies by removing the 1958–2018mean for each day; these

anomalies were used in subsequent analyses described in

section 3.

3. Homogenization method

Previous homogenization studies (Wang 2008; Dai et al.

2011; Haimberger et al. 2012; Zhou et al. 2018) have demon-

strated the critical importance of a reliable reference series for

detecting and adjusting discontinuities in a time series. This

is because a good reference series can remove most of the

real climate changes and synoptic variations (the noise) in a

time series, and thus enhance the signal (the spurious shifts)

to noise ratio and make it possible for statistical detection

and removal of the spurious shifts. We examined various

datasets, and determined that the NOAA-20CRv3 (the

Twentieth Century Reanalysis version 3 produced by

National Oceanic and Atmospheric Administration)

monthly temperature series (Slivinski et al. 2019) and the JRA-

55 high-frequency variations of daily temperatures can be used

as reliable reference series to remove natural monthly and

daily variations from the radiosonde data over 1958–2018

(see section 3a for details). The decision was based on char-

acteristics of available reanalysis products (spatial and tem-

poral coverage and their performance documented by prior

studies) and several tests applied to them, including their

homogeneity and correlations with radiosonde data. These

reference series were used to create the monthly and daily

difference series for detecting and adjusting the spurious

changes. They contain most of the natural variations and

long-term changes in the raw radiosonde data, thus allowing

the homogenized series to preserve many physical varia-

tions and changes, such as those associated with large-scale

circulation/weather patterns.

We developed a four-step approach (Fig. 4) to detect

and adjust spurious shifts in the mean and variance of

subdaily radiosonde temperature data for each observa-

tion time and at each pressure level as follows. An example

is given for the Lindenberg station in Germany in Fig. 5.

More details on each step are provided below. Note that

the same procedures were applied separately to the

surface-level temperature series as it may contain different

FIG. 3. Global distribution of the 1184 radiosonde stations included in the merged dataset

colored by the 12 radiosonde types used by different countries during the period 2007–12. Gray

circles are for radiosondes with unknown types during the period. Changes in sonde types

through time have been ubiquitous at almost all radiosonde stations in different countries.
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changepoints, except that it only has one level and the re-

analysis data at the lowest model level are used in Eqs. (1) and

(2) for this case.

Step 1: Construction of two difference series

The first temperature difference series (DTm) is for detec-

tion and removal of the shifts in the mean; it is constructed as

follows:

DTm5Tm_rds – aTsm_20CR–bTim_JRA; (1)

where Tm_rds is the raw radiosonde monthly mean tempera-

ture anomaly relative to the 1958–2018mean; Tsm_20CR is the

13-month moving-averaged NOAA-20CRv3 monthly tem-

perature anomaly; and Tim_JRA is the JRA-55 monthly

temperature anomaly with its 13-month moving average being

removed (referred to as intermonthly variation). In Eq. (1), a

FIG. 4. Schematic diagram showing our radiosonde data processing and the four-step homogenization method. Note that the subdaily

data for each level and observation time were converted into anomalies by removing their long-term (1958–2018) mean for each day

before all subsequent analyses. ‘‘DT’’ represents temperature difference series, subscripts ‘‘m’’ and ‘‘d’’ denote, respectively, monthly

mean and daily value; ‘‘_rds,’’ ‘‘_20CR,’’ and ‘‘_JRA’’ denote, respectively, radiosonde, NOAA-20CRv3, and JRA-55; and subscripts

‘‘sm’’ and ‘‘im’’ denote, respectively, 13-month moving-averaged data and the monthly data with the 13-month moving average being

removed (referred to as intermonthly variations). Also, a is the linear regression coefficient between Tsm_20CR and Tsm_rds, b is

between Tim_JRA and Tim_rds, and c is between Td_JRA and Td_rds.
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(b) is the linear regression coefficient between the similarly

filtered radiosonde data and Tsm_20CR (Tim_JRA), that is,

with the regression done separately as the variations are on

different time scales. Tsm_20CR does not contain radiosonde-

induced spurious changes since NOAA-20CRv3 did not as-

similate radiosonde data. It should be also able to describe

long- and short-term climatic variations and changes, since

NOAA-20CRv3 is forced with analyzed sea surface tempera-

ture (SST) and historical GHGand aerosol forcing. In section 3

we provided some assessments on the extent to which this is

indeed the case. Tim_JRA should not include the spurious

jumps caused by JRA-55’s use of the radiosonde data because

such jumps often occur on longer than 13-month time scales, as

shown in section 3a below. We used Tim_JRA, instead of the

intermonthly variations in NOAA-20CRv3, because it has

stronger correlations with Tm_rds (i.e., the intermonthly var-

iations in radiosonde data) than NOAA-20CRv3 does [see

section 3a(2) below]. Thus, we used Tsm_20CR and Tim_JRA,

respectively, to represent and set aside real long-term climatic

changes and intermonthly natural variations in Tm_rds, and

remove them from Tm_rds for constructing the difference se-

ries (Fig. 5). Both reference series are subject to homogeneity

tests [see section 3a(1) below] and correlation evaluations [see

section 3a(2) below] before being used here. Note that since

NOAA-20CRv3 temperature data end in 2015, we used JRA-55

temperature data to extend the NOAA-20CRv3 series to cover

2016–18 after adjusting the JRA-55 data over 2016–18 by the

mean offset (JRA-55 minus NOAA-20CRv3) over 2011–15.

The second difference series (DTd) is for detection and re-

moval of the shifts in the intramonthly variance of the daily

time series. It is defined as the residual of the regression of Td_

rds on Td_JRA for each pressure level and observation time:

DTd5Td_rds – cTd_JRA, (2)

where Td_rds (5T_rds 2 Tm_rds) represents representing

the intramonthly component of the raw radiosonde anomalies

(T_rds); Td_JRA (5T_JRA 2 Tm_JRA) represents the in-

tramonthly component of the JRA-55 data (T_JRA); and Tm_

JRA is the JRA-55 monthly mean temperature anomaly. In

Eq. (2), c is the linear regression coefficient between Td_rds

and Td_JRA. Td_JRA was tested and confirmed to be ho-

mogeneous with strong correlations with Td_rds before being

used here (see section 3a below).

Step 2: Detection of changepoints in the mean and variance

We applied the Penalized Maximal F (PMF) test developed

byWang (2008) at a significance level of 0.05 to the DTm series

for each of surface, pressure levels, and observation times to

detect spurious changepoints in the mean of the radiosonde

temperature data. Similarly, we applied an improved variant of

the Kolmogorov–Smirnov (K-S) test at a significance level of

0.001 fromDai et al. (2011)to the DTd series to detect spurious

changepoints in the variance of the temperature data. The

critical values of the K-S test statistic were estimated in

appendix A. An example of the test results is shown in Figs. 5b

and 5c. Using the significance level of 0.05 for the PMF test and

the significance level of 0.001 for the K-S test can detect

comparable and reasonable numbers of changepoints (see

section 3b).

Noise in the time series combined with uncertainties of the

tests mean that it is unlikely that a single changepoint would

be uniquely identified on the same date by the two tests at

different levels. To avoid identifying excessive changepoints,

after several tests the detected changepoints at all the pres-

sure levels from both the PMF and K-S tests were merged as

follows: all changepoints within 180 days were grouped to-

gether and only the one in the middle of the group (if there

are three or more changepoints) or the one with the larger

test statistic (for two changepoints) was kept for each group.

This means that our final changepoints will be 180 or more

days apart.

Step 3: Adjustment of spurious changes

The mean-matching (MM) and quantile-matching (QM)

algorithms from Wang et al. (2010) were applied to the DTm

and DTd series to adjust their spurious discontinuities for each

level and observation time. Up to five years of data from the

segments before and after eachmerged changepoint (from step 2)

were used to adjust the discontinuities in DTm and DTd with the

last segment as the baseline (Fig. 4).

FIG. 5. An example to illustrate the steps to homogenize the

monthly and daily radiosonde temperature anomalies (Tm_rds and

Td_rds in 8C) (a) at 1200UTC at 300 hPa at Lindenberg, Germany.

(b),(c) Monthly and daily difference series (DTm and DTd), re-

spectively. DTm is constructed by Tm_rds minus 13-month

moving-averaged anomalies from NOAA-20CRv3 (Tsm_20CR)

and intermonthly variations from JRA-55 (Tim_JRA). DTd is the

difference between Td_rds and JRA-55 daily anomalies (Td_

JRA). See the text for more details. Blue vertical lines indicate the

detected changepoints. The radiosonde types are shown by colored

rectangles at the bottom.
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Step 4: Creation of the homogenized temperature series

The two homogenized difference series (DTm and DTd)

from step 3 were added back onto the set-aside components

(aTsm_20CR 1 bTim_JRA, and cTd_JRA from step 1) to

obtain homogenized temperature anomaly series (Fig. 4).

a. Construction of monthly and daily temperature

difference series

To construct the reference series used in Eqs. (1) and (2) to

remove real physical variations and changes in the data, the

reference series are required to have data back to 1958, be

homogeneous with little or no impact from the radiosonde

inhomogeneity, and perform well in depicting real climate and

weather signals. After detailed analyses of several available

atmospheric reanalyses, NOAA-20CRv3 and JRA-55 re-

analysis products were selected for constructing the reference

series based on their homogeneities [section 3a(1) below] and

strong correlations with the radiosonde data [section 3a(2)

below] at the monthly and daily time scales.

NOAA-20CRv3 was recently produced using an updated

coupled atmosphere–land model of the NCEP Climate

Forecast System (CFS v14.0.1) via an ensemble Kalman filter

and four-dimensional incremental analysis (Slivinski et al.

2019). NOAA-20CRv3 has 3-hourly outputs on a horizontal

T254 grid (equivalent to 60-km spacing at the equator) and 64

vertical levels up to 0.3 hPa and 80 ensemble members. The

model is constrained by several key climate forcings [historical

time-varying CO2 concentrations, volcanic aerosols, ozone con-

centrations, and solar variations as in phase 5 of the Coupled

Model Intercomparison Project 5 (CMIP5)], observed SSTs,

sea ice, and sea level pressure (SLP) but without assimilating

the radiosonde or satellite observations (Slivinski et al. 2019).

Thus, NOAA-20CRv3 temperatures should not be affected

by nonclimatic shifts in radiosonde data and thus could be

used to represent and set aside most natural variations and

long-term changes that are associated with SSTs and SLP.

Previous studies have shown that a predecessor (NOAA-

20CRv2c) of NOAA-20CRv3 is capable of simulating long-

term changes in near-surface monthly temperature (Parker

2011; Zhou et al. 2018), and NOAA-20CRv3 is greatly im-

proved over its predecessor in many aspects including the

radiative effects of ozone, volcanic aerosols, and solar vari-

ations (Slivinski et al. 2019).

In contrast, many other reanalysis products assimilate ra-

diosonde temperature data (Zhou et al. 2018) and other upper-

air observations, such as NCEP-R1 (Kalnay et al. 1996) and

JRA-55 (Kobayashi et al. 2015), and thus they most likely in-

herit some of the discontinuities in the radiosonde data. For

example, NCEP-R1 and JRA-55 show several apparent jumps

in the late 1950s, 1970s, and 2000s at 300 hPa at Kuqa station

(China) (Fig. B1), when the observation system was upgraded

and/or the radiation correction method was changed in China

(Guo et al. 2016). These spurious changes are evident in both

theNCEP-R1 and JRA-55 but not in NOAA-20CRv3 (Fig. B1).

As a result, JRA-55 displays spurious cooling trends over most

of Asia at 300 hPa during the period 1958–2018, when NOAA-

20CRv3 shows warming (Fig. B2). These spurious changes are

reflected primarily in the monthly-mean temperature series,

which can be removed from the JRA-55 daily temperature

series, with the residual (i.e., Td-JRA) representing the high-

frequency component (i.e., intramonthly variation) that can

be used to remove synoptic variations in radiosonde tem-

perature series.

1) ASSESSMENT OF HOMOGENEITY OF THE REANALYSIS

REFERENCE SERIES

Homogeneity of the NOAA-20CRv3 monthly temperature

series at each grid box collocated with radiosonde stations was

first assessed via the PMF test at a significance level of 0.01. The

significance level of 0.01 has been adopted to detect reasonable

changepoints in the raw monthly series in many previous

studies due to large variability in the raw series compared

with a difference series (Wang 2008; Zhou et al. 2017, 2018).

The years with a detected changepoint (after merging the de-

tected changepoints from all the levels) are shown in Fig. 6a. It

is found that most locations have one or two detectable

changepoints (Fig. 6a) and these changepoints are concen-

trated around 1972, 1982, and 1998 around which either a

strong El Niño or La Niña event occurred (Fig. 6b). Spatial

patterns of the years with the detected changepoints (Fig. 6a)

are very similar to ENSO’s well-documented effect on near-

surface temperature (Davey et al. 2014). Meanwhile, volcanic

eruptions often cause sudden changes in tropospheric and

stratospheric temperatures that last for several years (Santer

FIG. 6. (a)Map of the years with the detected changepoints in the

NOAA-20CRv3 monthly temperature series at 0000 UTC at the

grid boxes collocated with radiosonde stations based on the PMF

test at all levels. Gray circles show no detectable changepoints and

many stations have only one changepoint. (b) (top) Histograms

(gray bars) of the years with the detected changepoints shown in

(a) and (bottom) the time series of the Niño-3.4 index (colored

curve) with the strong El Niño years labeled with red numbers and

the strong La Niña years labeled with blue numbers. The three

significant volcanic eruptions are alsomarked asAgung, El Chichón,
and Pinatubo.

1 FEBRUARY 2021 ZHOU ET AL . 1169

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/25/22 05:48 PM UTC



et al. 2014). These changes are also detected, particularly for

the Pinatubo eruption in 1991 (Fig. 6b). However, the detec-

tion of the Agung (in 1963) and El Chichón (in 1982) eruptions

is less successful (Fig. 6b), mainly due to the simulated weak

signal of these volcanic eruptions or substantial concurrent

variability in upper air temperatures. When we looked at

temperature series at some typical stations, we can obviously

see the signals of ENSO events and volcanic eruptions.

Therefore, these detected changepoints are mainly due to real

abrupt climatic changes and NOAA-20CRv3 monthly temper-

ature data since 1958 contain noobviously spurious sudden shifts

attributable to artificial causes, although this may not be true for

earlier years, other variables, or at other time scales. Note that

intermonthly variations of JRA-55 temperature (i.e., Tim_JRA)

were also tested using the PMF test at a significance level of 0.01

and found to be homogeneous. As such, the Tsm-20CR and

Tim_JRA in Eq. (1) can be used to remove these and other

natural variations in radiosonde monthly temperature series.

This will substantially reduce the probability of detecting the

changepoints associated with real abrupt climatic changes.

Homogeneity of the Td_JRA series at each level and each

collocated location was also examined using the improved K-S

test at a significance level of 0.001 adopted from Dai et al.

(2011). No significant changepoints could be detected. Note

that JRA-55 daily temperature anomaly after the removal of its

13-month moving average was also tested to be homogeneous.

FIG. 7. (a) Correlation coefficients between the collocated 13-month moving-averaged temperature anomalies from NOAA-20CRv3

(Tsm_20CR) and radiosonde (Tsm_rds) datasets at 0000 UTC and 700 hPa from 1958 to 2018. (b) As in (a), but using the monthly data

from JRA-55 (Tim_JRA) or NOAA 20CRv3 (Tim_20CR) and radiosonde (Tim_rds) datasets, with the 13-month moving average being

removed. (c) As in (a), but using daily temperature anomalies from JRA-55 (Td_JRA) and radiosonde (Td_rds) datasets, with the

monthly mean being removed from daily anomalies. (d)–(f) The corresponding vertical profiles of the globally averaged correlation

coefficients, with the line representing the median and the error bar showing the 5%–95% spatial ranges.
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In summary, we found that the Tsm_20CR and Tim_JRA in

Eq. (1), and Td_JRA in Eq. (2) are likely to be homogeneous

and thus may be used as reference time series.

2) VALIDITY OF USING REANALYSIS AS REFERENCE

SERIES

A good reference series should not only contain no spurious

shifts, but also be correlated strongly with the data series to be

homogenized. Figure 7 shows correlation coefficients between

the collocated JRA-55 or NOAA-20CRv3 and radiosonde

temperature variations on time scales of 13 months and longer,

1–13 months, and daily time scales at 700 hPa (Figs. 7a–c) and

their averaged vertical profiles (Figs. 7d–f). Even though

NOAA-20CRv3 does not assimilate any upper-air data, its 13-

month smoothed temperature series [i.e., Tsm_20CR in

Eq. (1)] still correlates significantly with similarly smoothed

raw radiosonde data (Figs. 7a,d), and thus it can be used to

reduce variations and long-term changes in the radiosonde

series. Please note that such smoothed series from JRA-55

(Tsm_JRA) may contain spurious changes propagated from

the radiosonde data (cf. Figs. B1 and B2) and thus should

not be used as a reference in Eq. (1). For the intermonthly

variations (Tim), Fig. 7e shows that JRA-55 has higher

correlations (r5;0.95) thanNOAA-20CRv3 (r5 0.2–0.9)with

the radiosonde data, especially for the upper levels. This implies

that Tim_JRA, rather than Tim_20CR, should be used to sub-

stantially reduce the intermonthly variations in radiosonde

temperatures. The collocated high-frequency anomalies Td_rds

and Td_JRA have correlation coefficients ranging from 0.82 to

0.94 (Figs. 7c,f), and thus Td_JRA is able to substantially remove

high-frequency variations in Td_rds. Note that relatively low

correlations over India and SouthAmerica (Figs. 6a–c) are likely

due to thewell-documented low quality of radiosonde data there

(Raj et al. 1987; Lanzante et al. 2003; Thorne et al. 2005).

Because of these strong correlations, the combination of the

Tsm_20CR and Tim_JRA is capable of removing a large part of

the natural variations and changes in the radiosonde monthly

anomalies through Eq. (1), and the Td_JRA can be used to re-

move most of the high-frequency variations in radiosonde daily

temperature through Eq. (2), as illustrated in Fig. 5.

The reanalysis data may contain systematic biases compared

with the radiosonde data, and the use of the scaling factors (ob-

tained through linear regression) in Eqs. (1) and (2) is designed to

minimize the impact of such biases in our analysis. For some cases

(mainly at 150–200-hPa levels) over India, the regression coeffi-

cientsb in Eq. (1) are smaller than 0.2 or greater than 2 because of a

few large jumps in those radiosonde temperature series. For those

cases, the coefficient b is calculated from the first-order difference

series; otherwise, it is set to 1. Furthermore, some reanalysis prod-

ucts including JRA-55 have a date-matching error (i.e., one day

FIG. 8. Mean segment length (in years) separated by the detected

changepoints for 0000 UTC at the 1184 stations based on the shifts

in the (a) mean and (b) variance, and (c) their combination. Black

circles show no detected changepoints at the stations.

FIG. 9. Comparison of the time series of the raw (black) and

homogenized (red) radiosonde monthly temperature anomalies at

1200 UTC and 300 hPa at (a) Lindenberg, Germany, and

(b) Changchun, China. The blue line represents the mean adjust-

ments added to the black line. The dashed line is the linear trend,

with its slope shown in the same color.

1 FEBRUARY 2021 ZHOU ET AL . 1171

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/25/22 05:48 PM UTC



ahead of the radiosonde) for the 0000 UTC temperature data

during 1970–73 and 1988–95 (Fig. C1). This error likely results from

their assimilation of radiosonde subdaily temperature data from

various sources including NCEP Global Telecommunication

System (NCEP-GTS)messages from1970 to 1999 that had thedate

error (Durre et al. 2018) (see appendix C for more details). This

date error in the JRA-55 0000 UTC temperature series was cor-

rected in our analysis.

b. Detection of changepoints in the mean and variance

In step2 (Fig. 4),weemployedaPMFtest at a significance level of

0.05 to the monthly temperature difference series to detect spurious

shifts in themean and an improvedK-S test at a significance level of

0.001 to the daily temperature difference series to detect artificial

discontinuities in the intramonthly variance. After several sensitivity

tests, these confidence levels were chosen in order to have a rea-

sonable and comparable number of changepoints at most of the

stations. Sixty percent of the detected changepoints appeared in the

mean, and 40% of them in the variance, with ;11% seen in both

the mean and variance. This implies that it is important to consider

spurious shifts in the variance besides the mean shifts for homoge-

nization of the radiosonde daily temperature data.

The mean length of the segments separated by the detected

changepoints shows distinct spatial patterns for the mean and var-

iance, but both display a country-dependent pattern (Fig. 8), which

is a result of the usages and changes of country-wide radiosonde

instruments (Fig. 3). The globally averagedmean segment length is

;7.2 (14.6) years for themean (variance)-based test and;5.5 years

after combining them. For surface-level temperature, global-

averaged mean segment length is ;16.4 (22.7) years for the mean

(variance)-based test and;13.1 years when combined.

We collected all available metadata from the IGRA2 archive in

an attempt to validate the detected changepoints to the extent these

incomplete records permit. Overall, about 56% of our detected

changepoints are confirmed by knownmetadata events (i.e., having

one recorded event within one year of the detected changepoint)

including instrument changes, radiation correction method

changes, station relocations, and changes in observation

practices. Conversely, about 53%of the availablemetadata events

correspond to at least one changepoint (i.e., having at least one

changepoint within one year of themetadata event). For example,

the detected changepoints at Lindenberg station, Germany, are

generally confirmed by its recorded instrument changes from

Freiberg (1958–71), to RKS-2 (1971–74), then RKS-5 (1974–87),

followed by MARZ (1987–92) and RS80 (1992–2004), and then

finally to RS92 (2004–18) (Fig. 5). Lindenberg is highly unusual

in a global context in the preservation of its metadata record and

the care and attention applied to its time series.

c. Adjustments of detected discontinuities

1) MEAN-MATCHING ADJUSTMENT FOR SPURIOUS

MEAN SHIFTS

In step 3 (Fig. 4), to remove the detected shifts in the mean

of the monthly temperature difference series, we adopted a

FIG. 11. Comparisons of the time series of the raw (light blue) and homogenized (red) radiosonde

daily temperature anomalies (Td_rds; 8C) at 1200 UTC and 300 hPa at New Delhi, India.

FIG. 10. As in Fig. 9, but at (a) Orenberg, Russia, and (b) New

Delhi, India.
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mean-matching adjustment by using up to five years of data

(if the segment length is 5 years or longer) before and after

each detected changepoint (Thorne et al. 2005; Haimberger

2007). Starting from the last changepoint, the mean difference

(over up to 5 years) around the changepoint is used to adjust

the data points within the entire segment before the change-

point, so that after the adjustment the mean shift around the

changepoint disappears. This process moves sequentially back-

ward until all themean shifts were removed (Figs. 9 and 10). The

latest segment is used as the reference segment because it con-

tains the most recent data collected by the most advanced in-

struments and thus is likely to be most reliable. Clearly, such a

mean-matching adjustment implicitly assumes that the mean

shift estimated using the difference series data around a

changepoint is due to nonclimatic changes. Thismay be invalid if

the difference series (DTm; Fig. 5b) still contains substantial

natural variations or long-term changes that may contribute to

the estimated mean shift around a changepoint. This is a com-

mon issue in all mean-matching adjustments used in data ho-

mogenization (Peterson et al. 1998; Reeves et al. 2007); it

further emphasizes the critical importance of minimizing the

natural variations and changes in the difference series. The

set-aside component (i.e., aTsm_20CR1 bTim_JRA) preserves

most natural temperature variations and changes, making the

FIG. 12. (a)–(k) Histograms of the high-frequency component of daily temperature anomalies at 1200 UTC and 100 hPa at New Dehli,

India. Each panel is from a different segment. Black (cyan) bars are for the raw (homogenized) data. (l) The latest reference segment used

to adjust the histograms of all prior segments.
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adjustment of DTm less affected by them. Despite this potential

problem, based on our visual examination and the fact that the

majority of our detected changepoints are confirmed by the known

metadata, we concluded that the mean shifts estimated around our

detected changepoints are likelymainly due tononclimatic changes,

and thus the adjustment should improve the homogeneity and

quality of the radiosonde temperature data.

Four examples of the mean adjustment are presented in Figs. 9

and 10, which show clear improvements in long-term homogeneity

of the data. Two apparent warm biases during 1958–71 and 1987–92

due to the slow response time of the Freiberg andMARZsensors at

Lindenberg are largely removed after the adjustment (Fig. 9a). The

adjustments removemost of the apparent discontinuities and increase

the linear trend during 1958–2018 from20.068 to 0.078Cdecade21 at

Lindenberg, Germany (Fig. 9a).

At Changchun, China, apparent systematic shifts in the raw

data around 1967, 1990, and 2000 are largely removed by the

mean adjustment (Fig. 9b). Zhai (1997) argued that relatively

large biases in the 1960s in Chinese radiosonde temperature data

are associated with frequent changes in instruments and radia-

tion correction methods. The large decrease around 2000

(Fig. 9b) results from the known upgrades of the sounding sys-

tems around that time,which led to national use ofL-band radar

and electronic radiosondes after 2002 at all Chinese sta-

tions (Guo and Ding 2009; Chen and Yang 2014; Guo

et al. 2019).

Many of the detected changepoints at the Orenburg

(Russia) and New Delhi (India) stations are readily apparent

by visual inspection alone (Fig. 10). It is well documented that

Indian and Russian radiosonde data contain large inhomoge-

neities because of their frequent instrument changes and other

causes (Raj et al. 1987; Parker et al. 1997; Lanzante et al. 2003;

Thorne et al. 2005; Schroeder 2009). The sudden cold biases

during 1969–70 and 1983–88 at Orenburg (Fig. 10a) cause a

downward trend from 1958 to 1988 but there remains an

overall warming (0.138Cdecade21) from 1958 to 2018, and the

adjustments improve the homogeneity and reduce the long-

term trend at this station. Due to frequent instrumental

changes, the radiosonde temperature series from New Delhi

(Fig. 10b) shows large short-term fluctuations, which are

especially marked during 1968–70, 1989–91, and 2011–15.

Our adjustments significantly reduce these jumps and lead

to a much larger warming trend (Fig. 10b); however, our

confidence in the homogenized Indian radiosonde data is

comparatively low because of the very poor quality of Indian

radiosonde data.

FIG. 13. Linear trends (8Cdecade21) from 1958 to 2018 in (a)–(c) raw and (d)–(f) homogenized annual-mean temperature data, as well

as (g)–(i) their difference at (top) 100, (middle) 300, and (bottom) 700 hPa. To cover a comparable time period, only stations with a data

length greater than 30 years and with at least 1 year of data for each decade were included here. The trends significant at the significance

level of 0.05 are shown as dots and the nonsignificant trends are shown as plus signs.
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2) QUANTILE-MATCHING ADJUSTMENT FOR SPURIOUS

VARIANCE SHIFTS

To adjust spurious discontinuities in the variance of the

daily temperature difference series, we employed a quantile-

matching algorithm of Wang et al. (2010) using up to five

years of data before and after each detected changepoint to

obtain the adjustment amount for each quantile. Data in each

segment were first grouped into 10 quantile categories.

Sensitivity tests showed that using 8 to 12 quantile categories

produced similar results. Starting from the last changepoint

and moving sequentially backward, the category-mean differ-

ences between the two adjacent segments (using data up to 5

years) are calculated from quantiles 1 to 10 and then fitted with a

natural spline to estimate the adjustment amount for adjusting

the data within each quantile of the entire segment before the

changepoint. Using the spline fitting to estimate the adjustment

amount substantially reduces the impact from the division of the

quantile categories. Again, the latest segment is used as the

reference without any adjustment. The quantile-matching al-

gorithm is a state-of-the-art approach to adjust the histograms

of two samples to be similar, and it has been used to homoge-

nize near-surface daily air temperature (Trewin 2013), daily

precipitation (Wang et al. 2010), and subdaily radiosonde hu-

midity data (Dai et al. 2011).

Figure 11 shows the comparison of the homogenized versus

raw time series of the high-frequency component of the radiosonde

daily temperature at the New Delhi station, whose discontinuities

are typical for other Indian stations. Spurious discontinuities in the

variance are very apparent during 1958–66, 1975–95, and 2008–10

(Fig. 11), probably due to frequent changes in instruments and

observation practices. The quantile-matching adjustment effec-

tively removes these apparent discontinuities, resulting in more

homogeneous variance from1958 to 2018 (Fig. 11).Althoughwedo

not have a ground truth to validate the adjusted daily series, Fig. 11

clearly shows that the adjustments improve the homogeneity of the

variance of the daily data, and this improvement is also seen outside

India (see section 4c below).

Figure 12 shows the comparisons of the segment histograms of

the homogenized versus raw data at New Delhi. As expected,

the histograms of the homogenized data aremore comparable to

each other and to the reference segment (Fig. 12). The adjust-

ment alsoworks well on some short segments (Fig. 10). Thus, the

quantile-matching adjustment greatly improves the homogene-

ity of the variance in daily temperature data.

In the final step, we obtained the homogenized temperature

series by adding two homogenized DTm and DTd series back

onto the set-aside components (i.e., aTsm_20CR 1 bTim_

JRA, and cTd_JRA).

4. Impacts of homogenization

a. Impacts on long-term trends

The mean adjustment to the monthly anomaly series can

significantly alter the long-term trend. Figure 13 shows that

FIG. 14. Zonally averaged latitude–height distributions of the linear trend (in 8Cdecade21) from 1958 to 2018 in

atmospheric temperatures from the (a) raw and (b) homogenized radiosonde datasets, and (c) JRA-55 and

(d) NOAA-20CRv3 sampled at the radiosonde stations. The data from Fig. 13 were used, and a minimum of three

58 3 58 grid boxes was required for estimating a zonal average for any given latitude band and time step.
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trends in the homogenized temperature series display more

spatially coherent patterns than those in the raw data. In par-

ticular, at 300 hPa over China, the homogenized temperature

data (Fig. 13e) show positive trends from 1958–2018 (consis-

tent with other regions in Eurasia), in contrast to negative

trends in the raw data (Fig. 13b) that have been propagated

into several reanalysis products, including NCEP-R1 and JRA-

55 (Figs. B1 and B2). The main reason for this change is the

removal in the homogenized data of the spurious temperature

decreases from the 1960s to 1970s and around 2000 (cf. Fig. 9b)

due to the known sounding system changes and upgrades in

China as mentioned previously in section 3c(1).

Compared with the raw data, the homogenized data show

significantly enhanced warming trends at the surface and in the

middle to lower troposphere, especially over Central and East

Asia and northern Africa (Figs. 13e,f), which is consistent with

near-surface air temperature trends (Zhou and Wang 2016a).

The trend differences between the homogenized and raw data

increase with height (Fig. 13), which is consistent with larger

systematic biases in radiosonde temperatures at higher alti-

tudes (Mears et al. 2006; Thorne et al. 2011a).

Zonally averaged temperature trends from the homoge-

nized data show a warming maximum around 300 hPa over

308S–308N that is evident also in NOAA-20CRv3 and JRA-55

but not in the raw data (Figs. 14 and 15). The vertical structures

of the tropospheric warming trends are more comparable

between JRA-55 and the homogenized data than among the

other datasets (Figs. 14 and 15), whereas the stratospheric

cooling seems to be more consistent among the homogenized

data, JRA-55, and NOAA-20CRv3 (Figs. 14 and 15). Due to

the opposite influences from tropospheric warming and

stratospheric cooling, it is difficult to accurately estimate

temperature trends near the tropopause, especially around the

Arctic (Fig. 14). The enhanced warming over the tropical up-

per troposphere has been a robust feature in climate models

under increased GHGs (Santer et al. 2005, 2017), but it has

been questioned because of the lack of such a warming maxi-

mum in the raw radiosonde data (Fig. 14a) (Thorne et al.

2011b; Mitchell et al. 2013). Our results reaffirm previous

suggestions that such an inconsistency may be due to the in-

homogeneities in the raw radiosonde data, and our homoge-

nized data confirm such a tropospheric warming maximum

(Figs. 14b and 15). More detailed comparisons with other ho-

mogenized radiosonde datasets, satellite observations and cli-

mate model simulations will be reported in a follow-on paper.

The 5th–95th-percentile uncertainty range of the homoge-

nized trends increases with height (Fig. 15), which is due to

higher temperature variability and lower data availability at

the upper levels. Temperature trends in the raw data are out-

side the 5th–95th-percentile range of the homogenized trends

(Fig. 15), indicating a significant adjustment for the raw data.

Note that our homogenization has relatively minor impacts on

surface-level temperature tends, with generally enhanced

warming over Central Asia and Canada but reduced warming

over southern Europe and southwestern North America (fig-

ure not shown).

b. Impacts on the quasi-biennial oscillation

The quasi-biennial oscillation (QBO) is a quasi-periodic

oscillation (;28 months) in the equatorial zonal wind between

the easterlies and westerlies in the tropical lower stratosphere

(Fig. 16) (Trenberth 1980; Butchart et al. 2020). The QBO is a

key feature for lower stratospheric temperature variability

(Baldwin et al. 2001; Butchart et al. 2020). Since NOAA-

20CRv3 has weak QBO signals (Fig. 16d), the QBO signal in

lower stratospheric radiosonde temperatures is retained in the

monthly temperature difference series [DTm in Eq. (1)].

Figure 16 shows similar 13–36-month signals between the ho-

mogenized and raw temperature data, suggesting that the

homogenization preserves the QBO signal in radiosonde

temperatures.

c. Impacts on the variance

Figure 17 compares the time-averaged standard deviation of

the high-frequency component of the homogenized and raw

daily temperature data. The homogenized data show more

consistent latitude-dependent patterns for all the pressure

levels that are likely associated with different weather patterns.

In particular, Indian stations present abnormally large vari-

ances in the raw data (Figs. 17a–c) that is significantly reduced

in the homogenized data (Figs. 17d–f). Figures 17g–i show that

the homogenization generally reduces the variance in the daily

data, especially over India, and the reduction in magnitude

increases with heights, in accordance with larger biases in

FIG. 15. Low-latitude (308S–308N) mean vertical profiles of the

linear trend (in 8Cdecade21) from 1958 to 2018 in the raw and

homogenized radiosonde temperature data, and the JRA-55 and

NOAA-20CRv3 sampled at the radiosonde stations. The 5%–95%

confidence intervals of the homogenized trends are shown as error

bars. The data from Fig. 13 were used here.
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radiosonde temperature data at higher altitudes (Mears et al.

2006; Thorne et al. 2011a). While we do not have a ground-

truth to validate the variance of the homogenized data, Fig. 11

clearly shows that our quantile-matching based adjustments

improve the homogeneity of the variance of the daily series,

and Figs. 17g–i show that this improvement is seen not only for

Indian stations, but also for stations in Southeast Asia, Europe,

and other regions. The improved variability in daily tempera-

ture data is critically important for studying extremes and for

improving future reanalysis products. The homogenization

also makes the surface-level temperature variance more con-

sistent over time than the raw data.

5. Conclusions and discussion

To improve the homogeneity of radiosonde temperature

data, we have developed a four-step automated approach to

effectively detect and adjust spurious shifts in both the mean

and variance of the subdaily radiosonde temperature records

from 1958 to 2018 at 1184 stations globally. We started with

compiling a complete and quality-controlled global radiosonde

data collection from 1958 to 2018 for observations near the

surface and at 16 standard pressure levels. The final merged

dataset mainly comes from IGRA2 with data gaps filled with

data from two ERA-assimilated radiosonde datasets. The

four-step homogenization method is summarized in Fig. 4

and briefly described below.

After verifying the absence of detectable inhomogeneities of

the 13-month averaged component in NOAA-20CRv3 and

short-term components in JRA-55 temperature data (Tsm_

20CR, Tim_JRA, and Td_JRA) and their correlations with the

collocated radiosonde temperature data, we constructed the

monthly and daily temperature difference series using Eqs. (1)

and (2) for each observation time and each pressure level at

each station. The strong correlations between the radiosonde

and reanalysis data (Fig. 7) enable us to remove most of the

natural variations and changes from the difference series using

the reanalysis-based reference series [i.e., Tsm_20CR, Tim_

JRA, and Td_JRA in Eqs. (1) and (2)]. This not only improves

the detection and adjustment of spurious changes, but also

verifiably preserves important natural temperature variations

such as from QBO, ENSO, and volcanic eruption effects in the

homogenized data.

In step 2, we employed the Penalized Maximal F (PMF) test

of Wang (2008) to the monthly difference series (DTm) and an

improved variant of Kolmogorov–Smirnov (K-S) test of Dai

et al. (2011) to the daily difference series (DTd) to detect

spurious changepoints in the mean and variance, respectively.

Approximately 60% of the detected changepoints appear in

the mean and 40% in the variance, with ;11% seen in both.

FIG. 16. Low-latitude (308S–308N) mean time–height distributions of the 13–36-month bandpass filtered tem-

perature anomalies (8C) from the (a) raw and (b) homogenized radiosonde data, and (c) JRA-55 and (d) NOAA-

20CRv3 sampled at the radiosonde stations. The data from Fig. 13 were used here.
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The mean length of the segments separated by the detected

changepoints display a country-dependent pattern, likely as-

sociated with the usages and changes of country-wide radio-

sonde instruments. Globally averaged mean segment length

is ;7.2 years for the mean shifts, ;14.6 years for the variance

shifts, and;5.5 years after combining them. About 56% of the

detected changepoints are confirmed by available metadata

and ;53% of the documented changes by available metadata

FIG. 17. The 1958–2018-averaged standard deviations (STDs; in 8C) of the (a)–(c) raw and (d)–(f) homogenized daily temperature

anomalies, as well as (g)–(i) their difference at (top) 100, (middle) 300, and (bottom) 700 hPa from 1958 to 2018. The STDswere calculated

for each year using the daily anomalies with the monthly mean being removed and then averaged over all the years. The daily data at the

stations from Fig. 13 were used here.

FIG. A1. Critical values estimated from 200 000 Monte Carlo simulations for each case as a function of the

(a) sample size and lag-1 autocorrelation with a fixed significance level of 0.001 and (b) sample size and significance

level with no autocorrelation for an improved variant of the Kolmogorov–Smirnov (K-S) test.
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correspond to at least one detected changepoint. These re-

sults suggest that many spurious discontinuities are embed-

ded in the radiosonde temperature data, and it is important to

consider spurious shifts in both the mean and variance when

homogenizing them.

In step 3, we adopted a mean-matching and a quantile-

matching algorithm (Wang et al. 2010) to adjust the disconti-

nuities in the DTm and DTd, respectively, with the latest

segment as the reference. Finally, the homogenized data series

is obtained by adding the two homogenized difference series

(DTm and DTd) back to the set-aside components [aTsm_

20CR 1 bTim_JRA, and cTd_JRA in Eqs. (1) and (2)].

The impact of the homogenization on long-term trends,

QBO signals, and the variance were assessed by comparing

them in the raw and homogenized data. Long-term (1958–

2018) trends in the homogenized temperature data show more

coherent spatial patterns than the raw data. The homogenized

data show enhanced warming trends in the middle-to-lower

troposphere over central and East Asia and northern Africa,

but do not show the spurious cooling around 300 hPa over

northern China and Mongolia seen in the raw data and many

reanalysis products. A tropospheric warming maximum

around 300 hPa over 308S–308N is absent in the raw data, but is

present in the homogenized data. Thus, the lack of such a

tropospheric warming maximum in previous analyses of ra-

diosonde data (Thorne et al. 2011b; Mitchell et al. 2013) is

likely due to the impact of the inhomogeneities in these data.

Our homogenized data confirm the existence of such a tropo-

spheric warming maximum present in some homogenized da-

tasets, reanalysis products, and climate models with increased

GHGs (Santer et al. 2005; Trenberth and Smith 2006; Thorne

et al. 2011b; Haimberger et al. 2012; Mitchell et al. 2013; Santer

et al. 2017). The homogenization generally reduces the vari-

ance and leads to more consistent latitudinal variations of the

variance in daily temperatures, especially for Indian stations.

Our results show that spurious shifts in the mean and

variance in the raw subdaily radiosonde temperature data

are numerous and nonnegligible. The four-step homogeni-

zation approach developed here is effective for detecting

and removing these shifts. The improved spatial coherence

of the trends and the improved temporal coherence of the

variance in the homogenized data suggest that the homog-

enization improves the quality of the data, although a lack of

the truth prevents a thorough validation. We believe that

our homogenized dataset (referred to as the University at

Albany Homogenized Radiosonde Subdaily dataset or UA-

HRD) at 16 standard pressure levels from 1958 to 2018,

which will be made available to the community at ftp://

aspen.atmos.albany.edu/data/UA-HRD/, has many poten-

tial applications, including studying tropospheric warming

trends, constraining atmospheric reanalyses, evaluating

climate simulations, helping homogenize radiosonde hu-

midity data, and studying climate extremes.
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APPENDIX A

The K-S Test

The conventional Kolmogorov–Smirnov (K-S) test has been

widely used to test whether two given PDFs are statistically

different (Press et al. 1992). Here, an improved variant of the

K-S test as described in Dai et al. (2011) was adopted to test

whether two samples from two moving segments have similar

or different distributions. For detecting unknown change-

points, we need to search and test each data point within a data

window to see if the two segments separated by this data point

have different PDFs. As such, the critical value for a given

FIG. B1. Time series comparisons of the monthly temperature

anomalies for 0000 UTC at 300 hPa at one example station (Kuqa,

China) among the raw (black) and homogenized (cyan) data and

reanalysis products including JRA-55 (gray), NOAA-20CRv3

(red), and NCEP-R1 (blue). The shifts, e.g., around 1974 and

2000 (vertical dashed lines), still exist in the JRA-55 and NCEP-R1

series because of their assimilation of the raw or underadjusted

radiosonde temperature data.
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significance level for the K-S test will need to consider the

impacts of the lag-1 autocorrelation (r1) and sample size

(N), often through empirical simulations as done in Dai

et al. (2011).

Following the procedures of Dai et al. (2011), we used

200 000 Monte Carlo simulations for each case of the r1 and N

values to estimate the critical values (Fig. A1) for use in de-

tecting unknown changepoints. Dai et al. (2011) generated the

critical values for the positive r1 values shown in Fig. A1, here

we extended the critical values to cover cases with negative r1
values, which occurred at a few stations. The critical values

nonlinearly increase with r1, but decreases with the sample

size; and they are smaller for negative r1 than for positive

r1 (Fig. A1).

APPENDIX B

Time Series Comparisons

Figure B1 shows time series comparisons at Kuqa station in

China among the raw and homogenized data, and three re-

analysis products, namely, JRA-55, NOAA-20CRv3, and

NCEP-R1. JRA-55 and NCEP-R1 assimilated most of the raw

radiosonde data, but NOAA-20CRv3 did not. Even though

JRA-55 assimilated the homogenized radiosonde temperature

data fromRICH (Haimberger et al. 2012), it still shows several

large shifts (e.g., around 1974 and 2000) at the Kuqa station

(Fig. B1). Partly due to the inadequate adjustments for the

radiosonde data, JRA-55 displays a spurious cooling pattern at

300 hPa over Asia from 1958 to 2018 (Fig. B2), which is also

seen in the raw data over China and Mongolia (Fig. 13h). This

seems to suggest that the adjustments made in RICH may be

insufficient.

APPENDIX C

Correction of Date Errors in JRA-55

Reanalysis products including JRA-55 assimilate radio-

sonde subdaily temperature data from various sources in-

cluding Global Telecommunication System (GTS) messages

from 1970 to 1999 maintained by the National Centers for

Environmental Prediction (NCEP). The NCEP–GTS dataset

was one of the main sources in IGRA version 1 (IGRA1) but

was replaced by a comparable dataset from 1973 to 1999 built

by the U.S. Air Force (USAF) 14th Weather Squadron in

FIG. B2. Linear trends from 1958 to 2018 in the (a)–(c) NOAA-20CRv3 and (d)–(f) JRA-55 annual-mean tem-

perature data at (top) 100, (middle) 300, and (bottom) 700 hPa.
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IGRA2. Compared with the NCEP–GTS dataset, the USAF

dataset has more complete data from the 1970s to 1980s, par-

ticularly for Europe and China, and exhibits similar spatial

completeness thereafter. More importantly, the dates of ob-

servations reported for 0000 UTC are correct in the USAF

dataset, but incorrect in the NCEP–GTS dataset because it is

recorded as one day ahead (Durre et al. 2018), which would

lead to the same date error for 0000UTC in reanalysis products

that assimilated the NCEP–GTS dataset, including JRA-55.

To correct this date error in JRA-55 daily temperature data

for 0000 UTC, in theory it is possible to detect the date error

by directly comparing the dates of the identical observations

between IGRA2 and IGRA1. However, this is not entirely

feasible in practice because of the different data coverages

between IGRA2 and IGRA1, especially from the 1970s to

1980s. Therefore, we used another method: (i) perform the K-S

test on the 0000 UTC daily temperature difference series (after

removing monthly means) between IGRA2 and JRA-55 (i.e.,

Td_rds and Td_JRA) at the same date (black lines in Fig. C1)

to obtain the segments with different variances that may arise

from the date error, instrument changes and so on; and (ii)

determine the segment with the date error if the standard de-

viation of the segment is 25% larger than that of the same

segment from another daily temperature difference series be-

tween IGRA2 and yesterday’s JRA-55 data (red line in

Fig. C1a). The 25% value was obtained by multiple tests.

Results show that the 0000 UTC daily data over the segment

from 1988 to 1995 at many stations in JRA-55 are one day

ahead of IGRA2 (Fig. C1), and these periods with the date

error roughly overlap those derived based on direct compari-

sons of the dates with identical values in IGRA2 and IGRA1. It

is worth noting that the segment from 1970 to 1973 was also

detected to have the date error at many European stations

(Fig. C1), despite there being insufficient data in IGRA1 dur-

ing this period to confirm it independently. These date errors in

JRA-55 were corrected before any subsequent analysis.
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